Chimeric recombinant human metapneumoviruses with the nucleoprotein or phosphoprotein open reading frame replaced by that of avian metapneumovirus exhibit improved growth in vitro and attenuation in vivo.
نویسندگان
چکیده
Chimeric versions of recombinant human metapneumovirus (HMPV) were generated by replacing the nucleoprotein (N) or phosphoprotein (P) open reading frame with its counterpart from the closely related avian metapneumovirus (AMPV) subgroup C. In Vero cells, AMPV replicated to an approximately 100-fold-higher titer than HMPV. Surprisingly, the N and P chimeric viruses replicated to a peak titer that was 11- and 25-fold higher, respectively, than that of parental HMPV. The basis for this effect is not known but was not due to obvious changes in the efficiency of gene expression. AMPV and the N and P chimeras were evaluated for replication, immunogenicity, and protective efficacy in hamsters. AMPV was attenuated compared to HMPV in this mammalian host on day 5 postinfection, but not on day 3, and only in the nasal turbinates. In contrast, the N and P chimeras were reduced approximately 100-fold in both the upper and lower respiratory tract on day 3 postinfection, although there was little difference by day 5. The N and P chimeras induced a high level of neutralizing serum antibodies and protective efficacy against HMPV; AMPV was only weakly immunogenic and protective against HMPV challenge, reflecting antigenic differences. In African green monkeys immunized intranasally and intratracheally, the mean peak titer of the P chimera was reduced 100- and 1,000-fold in the upper and lower respiratory tracts, whereas the N chimera was reduced only 10-fold in the lower respiratory tract. Both chimeras were comparable to wild-type HMPV in immunogenicity and protective efficacy. Thus, the P chimera is a promising live HMPV vaccine candidate that paradoxically combines improved growth in vitro with attenuation in vivo.
منابع مشابه
Specificity and functional interaction of the polymerase complex proteins of human and avian metapneumoviruses.
Human metapneumovirus (HMPV) and avian metapneumovirus (AMPV) have a similar genome organization and protein composition, but a different host range. AMPV subgroup C (AMPV-C) is more closely related to HMPV than other AMPVs. To investigate the specificity and functional interaction of the polymerase complex proteins of human and avian metapneumoviruses, a minireplicon system was generated for A...
متن کاملDeletion of the SH gene from avian metapneumovirus has a greater impact on virus production and immunogenicity in turkeys than deletion of the G gene or M2-2 open reading frame.
Subgroup A avian metapneumoviruses lacking either the SH or G gene or the M2-2 open reading frame were generated by using a reverse-genetics approach. The growth properties of these viruses were studied in vitro and in vivo in their natural host. Deletion of the SH gene alone resulted in the generation of a syncytial-plaque phenotype and this was reversed by the introduction of the SH gene from...
متن کاملComparison of the full-length genome sequence of avian metapneumovirus subtype C with other paramyxoviruses.
We determined the nucleotide (nt) sequence of the small hydrophobic (SH), attachment glycoprotein (G), and RNA polymerase (L) genes, plus the leader and trailer regions of the Colorado strain of Avian metapneumovirus subtype C (aMPV/C) in order to complete the genome sequencing. The complete genome comprised of 13,134 nucleotides, with a 40 nt leader at its 3' end and a 45 nt trailer at its 5' ...
متن کاملPrevalence of avian metapneumovirus subtype B in live bird market in Gilan province, Iran
Avianmetapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and swollen head syndrome in chickens. Four aMPV subgroups (A-D) have been reported previously based on their genetic and antigenic differences. Evidence suggests that the live bird markets (LBMs) play an important role in the epidemiology of the avian v...
متن کاملAntigenic and Genetic Variability of Human Metapneumoviruses
Human metapneumovirus (HMPV) is a member of the subfamily Pneumovirinae within the family Paramyxo- viridae. Other members of this subfamily, respiratory syncytial virus and avian pneumovirus, can be divided into subgroups on the basis of genetic or antigenic differences or both. For HMPV, the existence of different genetic lineages has been described on the basis of variation in a limited set ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 79 24 شماره
صفحات -
تاریخ انتشار 2005